
International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 961
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Impact of Object Oriented Design Patterns on
Software Development

R.Subburaj Professor, Gladman Jekese, Chiedza Hwata

Abstract —Software design patterns are a bonanza for building large Object Oriented (OO) software systems. They provide well-tested
and proven solutions to recurring problems that developers address. There are several benefits of using patterns. They can speed up the
software development process. Design patterns consolidate learning with an aim to make it easier for designers to use well-known and
successful designs developed from expert experience. At the same time software design patterns are too abstract and remain an art that
has to be mastered over time with experience. This paper seeks to evaluate the advantages and disadvantages of design patterns.

 Index Terms— design patterns, analysis, selection, software development, object oriented, pattern catalog, pattern usage

—————————— ——————————

1 INTRODUCTION

BJECT oriented programming (OOP) has evolved to
improve the quality of the programs. However,
interesting concepts such as inheritance and

polymorphism were also introduced in OOP to enhance
reusability. Object oriented design patterns have been
introduced in mid 1990s as a catalog of common solutions to
common design problems, and are considered as standard of
‘‘good’’ software designs [1]. There are several methodologies
in Object Oriented Development, of which design patterns is
one of them. Due to the fact that Object Oriented Design is
complex, it is of paramount importance that software
developers build on the experience of others by making use of
frameworks or design patterns. The notion of patterns was
first introduced by Christopher Alexander, who identified and
proposed solutions to common architectural problems. In his
work he dealt with the question whether quality in
architecture can be objective. By examining several
architectural artifacts he discovered that ‘‘good’’ quality
designs shared some common characteristics, or shared
‘‘common solutions to common problems’’ [2]. A design
pattern represents a recurring solution to a design problem
within a particular domain such as business data processing,
telecommunications, graphical user interfaces, databases, and
distributed communication software [3].

Design patterns facilitate architectural level reuse by
providing “blueprints” that guide the definition, composition,
and evaluation of key components in a software system.

————————————————
• Dr. R Subburaj is a Professor and Consultant in the Department of

Information Technology at SRM University, Chennai., India,. E-
mail: subburaj.spr@gmail.com

• Gladman Jekese is an M.Tech student in Information Technology at SRM
University, Chennai, India, E-mail: jgman86@gmail.com

• Chiedza Hwata is an M.Tech student in Information Technology at SRM
University, Chennai, India, E-mail: chiedza11@gmail.com

In general, a large amount of experience reuse is possible at
the architectural level. However, reusing design patterns does
not necessarily result in direct reuse of algorithms, detailed
designs, interfaces, or implementations [4], [5]. It
systematically explains a general design that addresses a
recurring design problem in object-oriented systems. Design
patterns also describe the problem, the solution, when to
apply it, plus the consequences associated with that specific
solution. It also gives implementation hints and examples as
well as a description or template for how to solve a problem
that can be used in many different situations. The solution is
customized and implemented to solve the problem in a
particular context. In the Gang of Four (GoF) book, patterns
typically have these major elements: Intent, Motivation, and
Applicability, Structure, Participants, Collaborations,
Consequences, Implementation, Sample Code, Known Uses
and Related Patterns [6]. Although the terminology may differ
with the author, all Object oriented design patterns are written
following the aforementioned factors.

This paper is categorized into eight sections; with section 2
representing the related work outline, section 3 explaining
basic classes of the design pattern catalog, section 4 design
pattern selection, section 5 outlines how to use design
patterns, section 6 describing the advantages and
disadvantages of design patterns in 7, section 8 concluding the
paper.

2 RELATED WORK
Object oriented design pattern is an active area of research

in software development. Ackerman L and Gonzalez C
explore the benefits of implementing patterns in software
designs [7]. The article introduces developers and architects to
the idea of a pattern implementation which is an artifact that
allows the codification of a pattern specification for a specific
environment and can be created and used for different phases
in the software development lifecycle [7]. Rising. L analyzes
an example from a small development team and discovers that
a novice pattern, called the Mediator, is a perfect fit for the
design challenges that they had just spent hours battling [8].

O

IJSER

http://www.ijser.org/
mailto:subburaj.spr@gmail.com
mailto:jgman86@gmail.com
mailto:chiedza11@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 962
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

In [9], an analysis was done to verify the reusability of
design patterns and software packages, which uncovered
some advantages and disadvantages of design patterns. Three
examples employing design patterns were developed,
accompanied by alternative designs that solve the same
problem, plus a tool to calculate the scores of extensibility was
used and it suggested that in most scenarios the patterns
provide a solution that is most extensible although the
conclusion cannot be generalized for all patterns in [10]. A
team at Erricson developed frameworks based on design
patterns for two years, according to [4], [11]. The history of
design patterns and some developments characterizing the
advantages and disadvantages of design patterns are
presented in [12]. Appostollos 2006 evaluates usage of object
oriented design patterns in game development, proving
maintainability although the research was biased towards
game development only [13].

Yacoub, S. A., Ammar, H. H., & Mili A., teaches developers
about the abstraction benefits of design patterns. The paper
explains the benefits that include understanding the
dependencies and collaboration between participating
patterns while hiding implementation details. Douglas C.
Schmidt and Paul Stephenson present a case study illustrating
the implementation of design patterns (Reactor and Acceptor)
in object-oriented telecommunication software framework
across UNIX and Windows NT OS platforms and discuss the
techniques, benefits, and limitations of applying a design
pattern-based reuse strategy to commercial
telecommunication software systems [4].

Fowler, M. (2003), explains the value of patterns as teaching
tools. Written patterns help educate other team members for
building and reviewing software and some developers declare
patterns as good or bad instead of appropriate or not [14]. T
Cline, M.P. (1996), focuses on the advantages and
disadvantages of adopting and applying design patterns,
which are a valuable tool for practicing software professionals.
The paper presents the practical benefits of design patterns as
well as inhibitors to pattern applications, which proves is
beneficial to IT professionals who want to learn more or desire
to promote the use of design patterns [15].

3 DESIGN PATTERN CATALOG
Design patterns can speed up the development process by

providing tested, proven development paradigms. Effective
software design requires considering issues that may not
become visible until later in the implementation. Reusing
design patterns helps to prevent subtle issues that can cause
major problems and improves code readability for developers
and architects familiar with the patterns. It has taken years to
establish common vocabulary on patterns. One of the
drawbacks to design patterns is that the same names are used
for different patterns. For example the Value Object pattern
(Fowler, Value Object, 2002) described as a pattern for storing
mutable data is preferred by Fowler for static and immutable
data while he uses the Data Transfer Object pattern(Fowler,
Data Transfer Object, 2002) for the former purpose [1], [16].
Design patterns can be grouped according to their usage.

There are 3 basic classes of design patterns;
Structural design patterns
This group of design patterns eases software design by

identifying a simple way to realize relationships between
entities. Such patterns are all about Class and Object
composition. Structural class-creation patterns use inheritance
to compose interfaces while structural object-patterns define
ways to compose objects to obtain new functionality.
Examples of structural design patterns include adapter,
decorator, bridge, composite, flyweight, façade and proxy.

Creational design patterns
These design patterns are basically concerned with class

instantiation and are composed of two dominant ideas. One is
encapsulating knowledge about which concrete classes the
system uses and the other hides how instances of these
concrete classes are created and combined [1]. Creational
design patterns are further categorized into Object-creational
patterns and Class-creational patterns, where Object-creational
patterns deal with Object creation and Class-creational
patterns deal with Class-instantiation. In greater details,
Object-creational patterns defer part of its object creation to
another object, while Class-creational patterns defer its object
creation to subclasses Gang of Four [17]. The examples of
creational design patterns are; abstract factory, builder, factory
method, singleton and prototype.

Behavioral design patterns
Behavioral design patterns identify common

communication patterns between objects and realize the
assignment of responsibilities between objects. By doing so,
these patterns increase flexibility in carrying out this
communication because they shift focus away from flow of
control and concentrate just on the way objects are
interconnected. Observer, chain of responsibility, interpreter,
iterator, memento, template method, command, visitor,
strategy and mediator are some of the examples of behavioral
design patterns.

4 HOW TO SELECT A DESIGN PATTERN
With many design patterns to choose from; it may be

difficult to find one that addresses a particular problem,
especially if the list is new and unfamiliar. The problem of
searching patterns is defined as the effort of getting
information about existing patterns; whereas pattern selection
is described as the problem of deciding which pattern to
choose among all available solutions. Below is an outline of
approaches that can be used to find the design pattern that
suits a particular problem.

According to the GoF book, there are five main approaches
for searching and selecting design patterns namely; pattern
repositories and pattern catalogues, recommendation systems,
formal languages, search engines and other approaches [10].
In [18], [19], [20], [21], the authors create online pattern
repositories in order to increase the availability of patterns. In
such repositories patterns can be retrieved through searching
criteria and by manual browsing among various patterns.
Furthermore, in [22], [23] several recommendation systems are
suggested in order to suggest the appropriate pattern,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 963
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

according to the problem that the developer wants to solve.
There are also several papers that describe approaches that use
formal languages in order to represent design patterns and
select patterns according to such a representation [24], [25]
[26]. Selecting patterns through search engines corresponds to
searches through keywords in engines that crawl and index
pattern descriptions. Finally, there are several other
approaches that cannot be classified in any of the above
categories such as [6], [27].

According to [28], ways have been proposed that enable
software developers to find the adequate design pattern(s) for
a given design problem. It remains, thus, a measure avoiding
the impact of the vast amount of design patterns present in
different design pattern catalogues.

Consider how design patterns solve design problems: According
to the GoF textbook discussion, design patterns help find
appropriate objects, determine object granularity, specify
object interfaces, and several other ways in which design
patterns solve design problems.

Scan Intent sections from all the patterns in the catalog: Each
pattern's intent is to be considered to find one or more that
sound relevant to the current problem. A classification scheme
can be used to narrow the search.

Study how patterns interrelate: Considering and studying
relationships between design patterns can help direct
developers to the right pattern or group of patterns.

Study patterns of like purpose: Each catalog classifies design
patterns as creational, structural, or behavioral patterns. Each
will include introductory comments on the patterns and
concludes with a section that compares and contrasts them.
These sections give insight into similarities and differences
between patterns of like purpose.

Examine causes of redesign: Examining the causes of redesign
in most designs to see if the current problem involves one or
more of such and then looking at the patterns that help in
avoiding the causes of redesign.

Consider what should be variable in the design: This approach
is the opposite of focusing on the causes of redesign. Instead
of considering what might force a change to a design,
consideration is to be done, so as to realize what has to be
changed without redesign. The focus is on encapsulating the
concept that diverges from the themes of many design
patterns. Consider aspects in which design patterns allow
independent variance thereby letting the designer change
them without redesign.

5 HOW TO USE DESIGN PATTERNS
Once a design pattern has been selected, the question is

now on the approach that is to be used to apply the design
pattern effectively. The following are the steps that can be
employed in the use of a design pattern:

The design pattern has to be read through at least once for
an overview. While reading, particular attention should be
paid to the applicability and consequences sections to ensure
that the pattern is right for that specific problem. The
structure, participants and collaborations sections must be
revisited and an understanding of how the classes and objects

in the pattern relate to one another needs to be achieved.
Studying the code helps in learning how to implement the
pattern, and this is done by looking at the sample code section
to find concrete examples of the design pattern in the code.

Choice of names for pattern participants is very important
because they ought to be meaningful in the application
context. They are usually too abstract to appear directly in an
application. Nevertheless, it's useful to incorporate the
participant name into the name that appears in the
application, as this helps make the pattern more explicit
during the implementation. For example, usage of the Strategy
pattern for a text composition algorithm might mean having
classes such as Simple-Layout-Strategy or Text-Layout-
Strategy [1]. The next stage involves defining the classes,
declaring their interfaces, establishing their inheritance
relationships, and defining the instance variables that
represent data and object references. Identifying existing
classes in the application that the pattern will affect and
modifying them accordingly can also be included.

Defining application-specific names for operations in the
pattern generally depends on the application. Responsibilities
and collaborations associated with each operation should be
used as a guide. Consistency in the naming conventions is
important, for example, using the "Create-" prefix consistently
denotes a factory method. Implementing the operations is now
done to carry out the responsibilities and collaborations in the
pattern. The Implementation section offers hints to guidance
in the implementation. The examples in the Sample Code
section may be of help as well [1].

6 ADVANTAGES OF DESIGN PATTERNS
The following are some of the benefits of OO design

patterns.
They can reduce development time as known solutions are used

instead of reinventing the wheel thereby improving delivery speed.
Design patterns promote discovery and learning with an

aim to make it easier for designers to use well-known and
successful designs developed from expert experience (Chang,
2011) [5]. According to Rising (2010) [8], there is a debate
about the merits of providing developers with formal training
versus simply having access to a large searchable repository
within which to search for a pattern to address some sticky
problem. According to Bleistein (2003), engineers find
themselves under increasing pressure to deliver solutions with
a high degree of quality in a timely manner [29]. As the Project
Triangle (2011) describes, project management can only focus
on two of the following three facets of a development effort:
(a) speed, (b) quality, and (c) cost [30]. 'Each pattern describes
a problem which occurs over and over again in our
environment, and then describes the core of the solution to
that problem, in such a way that you can use the solution a
million times over, without ever doing it the same way twice’
[31].

Design patterns provide flexibility and extensibility.
Tichy (1998) describes the concept of flexibility as how

design patterns can improve the structure of software, speed
up implementation, simplify maintenance, and help avoid

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 964
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

architectural drift. Future changes (extensibility) consistent
with one of these hinges are relatively inexpensive, but forcing
the software to change in other ways is like bending your
elbow backwards; the system normally breaks [32].It is also
beneficial to use known solutions that are tried and tested.

Patterns make the communication of development teams easier.
Because design patterns capture distilled experience, they

can provide a communication tool throughout the software
development lifecycle and across diverse communities of
designers and programmers (Cline, 1996) [15]. This improved
communication among software developers is a benefit that
can empower less experienced developers to produce high-
quality designs. According to Fowler (2003) [33], an expert on
a team can use written design patterns to help educate other
team members as they work through software requirement,
design, and review.

Patterns are underspecified
Design patterns are underspecified since they generally do

not over constrain implementations. This is beneficial since
patterns permit flexible solutions that are customizable to
account for application requirements and constraints imposed
by the application development. Because they are
underspecified, implementing a pattern on your own for a
particular purpose is one of the best ways to learn about it [4].

Design patterns capture knowledge that is implicitly understood
Once developers are exposed to, and properly motivated

by, design patterns they are eager to adopt the pattern
nomenclature and concepts. This stems from the fact that
patterns codify knowledge that is already understood
intuitively. Therefore, once basic concepts, notations, and
pattern template formats are mastered, it is straightforward to
document and reason about many portions of a system’s
architecture and design using patterns [34].

They promote a structured means of documenting software
architectures

This is done by capturing the structure and collaboration of
participants in a software architecture at a higher level than
source code. This abstraction process is beneficial since it
captures the essential architectural interactions while
suppressing unnecessary details [4]. Design patterns make it
easier to reuse successful designs and architectures.
Expressing proven techniques as design patterns makes them
more accessible to developers of new systems. Design patterns
help in the choice of design alternatives that make a system
reusable and avoid alternatives that compromise reusability.
Design patterns can even improve the documentation and
maintenance of existing systems by furnishing an explicit
specification of class and object interactions and their
underlying intent. Put simply, design patterns help a designer
get a design "right" faster [1]. Patterns improve the
documentation and maintenance of existing systems by
furnishing an explicit specification of class and object
interactions and their underlying intent.

Patterns are a known solution for building software systems, and
provide solutions to recurring problems

Developers employ design patterns because they make use
of tested solutions. According to Bansyia et al; “Software
reusability reflects the presence of object-oriented

characteristics that allow a system to be reapplied to a new
problem without significant effort”, (Bansiya and Davis, 2002)
[35]. Design patterns capture expertise and make it accessible
to non-experts in a standard form. Therefore patterns help in
identifying common solutions to recurring problems. The
solution is really what the pattern is, yet the problem is a vital
part of the context. A pattern cannot be fully understood
without understanding the problem, and the problem is
essential to helping people find a pattern when they need it
[15].

Design patterns can be used to provide a software hinge or
adaptability point

Design patterns constrain maintenance programmers by
reducing the chance of breaking a design pattern’s
adaptability point (or software hinge). Object-oriented design
patterns specify the relationships between the participating
classes and determine their collaboration. Such solutions are
especially geared to improve adaptability, by modifying the
initial design in order to ease future changes [1]. Each pattern
allows some aspect of the system structure to change
independently of other aspects.

They make it easier to reuse successful designs and avoid
alternatives that diminish reusability

Design patterns capture the static and dynamic structures
of solutions that occur repeatedly when developing
applications in a particular context [1], [17], [36].
Systematically incorporating design patterns into the software
development process helps improve software quality since
patterns address a fundamental challenge in large-scale
software development: communication of architectural
knowledge among developers. Patterns can also be used in
software architecture and, if applied properly, increase
flexibility and reusability of the underlying system. Each
pattern allows some aspect of the system structure to change
independently of other aspects [13].

Improved IT process and communication
Design patterns coordinate the entire process and

community through a common vocabulary. They assist in
improving software communication quality since they address
a fundamental challenge in large-scale software development;
communication of architectural knowledge among developers
[4].

Constrain maintenance programmers
Require maintenance programmers to understand and

preserve the integrity of the design patterns during
maintenance changes. This therefore ensures preservation of
the credibility of the quality of design patterns.

Design patterns can be used reactively and proactively through
fragmenting and abstraction of design.

Design patterns can be used reactively as a documentation
tool to classify the fragments of a design and proactively to
build robust designs with design-level parts that have well
understood trade-offs [15].

Design patterns can turn a trade-off into a win-win situation by
allowing multiple facets of quality that are often viewed as mutually
exclusive.

The notion of patterns was first introduced by Christopher
Alexander, who identified and proposed solutions to common

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 965
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

architectural problems. In his work he dealt with the question
whether quality in architecture can be objective. By examining
several architectural artifacts he discovered that ‘‘good’’
quality designs shared some common characteristics, or
shared ‘‘common solutions to common problems’’ [2].
Adaptability must be explicitly designed into the software in
designated places.

7 DISADVANTAGES OF DESIGN PATTERNS
The following provides the views of critics;
Remains an art which can only be mastered after using it for

many years
Developers can still make a mistake of employing a design

pattern where it is not necessary, for example given a
subsystem does not necessarily qualify the usage of a proxy
pattern. It is dependent on experience of usage by the
developers. According to Manolescu (2007), adoption rates are
still low for IT organizations due to lack of discovery and
limited education around how to apply design patterns to
specific domain contexts. A survey from Manolescu (2007)
indicates that only half of the developers and architects in IT
organizations use patterns. Additionally, ninety percent of
respondents that claim to be pattern practitioners hadn’t taken
any educational courses on design patterns. Manolescu
attributes this low adoption rate to the fact that finding
patterns relevant to a particular problem isn’t trivial and
because the design pattern world doesn’t have an
authoritative index [16]. This challenge is, in part, due to the
nature of how patterns often match a problem domain and
each domain needs a distinct approach (Bleistein, 2003) [29].

Over engineering and under-engineering
Using patterns and languages of patterns to generate

architectures may lead to over-engineering the design of a
program. Over-engineering happens when a design or a piece
of code is more flexible or sophisticated than it should be,
most likely in preparation for future extensions that may or
may not come. Over-engineering is the opposite of under-
engineering, which occurs when a programmer chooses the
path of least resistance to design and implement a program,
leading to a solution that is suboptimal and that must be
changed to adapt to foreseeable changes. Under-engineering is
much more frequent than over-engineering, because
programmers often work under time and cost pressures and,
thus, cannot spend the required time to carefully think and
craft their changes. Time and cost pressures often lead to the
decay of the program design and implementation. A solution
to both under- and over-engineering is to apply refactoring
prior to modifying the design or the code of the program. The
refactoring step is necessary to clean up the program and
makes it ready for change, at the right time and with the right
amount of work. Refactoring to or away from patterns is thus
a preliminary step before modifying the program, like dusting
a room is before painting it. It contributes to the change by
making it easy and safe to perform, even though it is not the
change per se [12].

They target the wrong problem sometimes

The need for patterns results from using computer
languages or techniques with insufficient abstraction ability
[37]. Under ideal factoring, a concept should not be copied,
but merely referenced. But if something is referenced instead
of copied, then there is no "pattern" to label and catalog.
Conway’s law suggests that “organizations which design
systems are constrained to produce designs which are copies
of the communication structures of these organizations”
(Conway, 1968) [38]. Although Conway’s law was not verified
at the time of its publishing it was heavily cited for decades
and recent studies from Harvard Business School (McCormack
et al., 2008) and Microsoft research (Agape et al., 2008) confirm
it [39].

Use of design patterns does not necessarily improve quality
Many studies in the literature are based on the premise that

design patterns improve the quality of object-oriented
programs. Yet, some studies suggest that the use of design
patterns does not always result in “goo” designs. For example,
a tangled implementation of patterns impacts negatively the
quality that these patterns claim to improve. Also, patterns
generally ease future enhancement at the expense of
simplicity. Thus, evidence of quality improvements through
the use of design patterns consists primarily of intuitive
statements and examples. There is little empirical evidence to
support the claims of improved reusability, expandability and
understandability as put forward in when applying design
patterns. Also, the impact of design patterns on other quality
attributes is unclear.

Developers and managers must recognize that learning a
collection of patterns is no substitute for design and implementation
skills

In fact, patterns often lead team members to think they
know more about the solution to a problem than they actually
do. For example, recognizing the structure and participants in
a pattern (such as the Reactor or Acceptor patterns)

Design patterns may increase complexity
Design pattern flexibility often comes at a price of

complexity as dynamic, highly parameterized software is
harder to understand and document (Wendorff, 2001).
Patterns are said to be half-baked, that means one always have
to finish the development and adapt it to their own
environment. The research indicates that the poor judgments
of individual software developers often add complexity
without benefit which results in designs that become difficult
to alter or remove [40].

Conventional pattern catalogs are too abstract
One of the main concerns with conventional pattern

catalogs [1], [17], however, is that they are too abstract.
According to research, overly abstract pattern descriptions
make it difficult for developers to understand and apply a
particular pattern to systems they were building in most cases.

Use of inappropriate design patterns
As usual, however, restraint and a good sense of aesthetics

are required to resist the temptation of elevating complex
concepts and principles to the level of hyperbole. There is a
tendency for some developers to adopt a tunnel vision where
they would try to apply patterns that were inappropriate,
simply because they were familiar with the patterns. For

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 966
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

example, the Reactor pattern may be an inefficient event de-
multiplexing model for a multi-processor platform since it
serializes application concurrency at a fairly coarse-grained
level [33].

Pattern overload
A drawback to the intuitive nature of patterns is a

phenomenon we termed pattern overload. In this situation, so
many aspects of the project are expressed as patterns that the
concept becomes diluted. This situation occurs when existing
development practices are relabeled as patterns without
significantly improving them. Likewise, developers may
spend their time recasting mundane concepts (such as binary
search or building a linked list) into pattern form. Although
this is intellectually satisfying, it becomes counter-productive
if it does not lead to software quality improvements [41].

Expectation management
Many of the problems with patterns discussed above are

related to managing the expectations of development team
members. As usual, patterns are no silver bullet that will
magically absolve developers from having to wrestle with
tough design and implementation issues.

Languages of Patterns
Often, a pattern considered and used in isolation does not

fulfill all the programmer's needs or does not give all the
potential of its QWAN (Quality Without A Name). A pattern
must be used by programmers in collaboration with other
patterns. Such consistent set of patterns form language of
patterns. A well-known language of patterns is the language
defined by Alexander in his work, for example the language of
pattern related to building houses or the one related to
planning a city. In software engineering, there exist many
languages of patterns, even though none is currently more
well-known as the language defined in the GoF's book.
Languages of patterns exist also for different functional and
non-functional contexts, for example security patterns form a
language of patterns dedicated to preventing security issues in
programs [41].

8 CONCLUSION AND FUTURE WORK
 From the analysis carried out based on the previous

published work, a conclusion is reached that design patterns
are not a panacea. In as much as there are advantages, they
also tend to pose a lot of disadvantages if not applied
correctly. In this paper a brief overview of OO design patterns
is given with catalog of design patterns, how to select and use
them and their advantages and disadvantages in OO analysis
and design. Much work is still to be done on design patterns
to make them understandable to new users because currently
usage depends on the developer’s expertise.

REFERENCES
1. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, ‘Design

Patterns: Elements of Reusable Object-Oriented Software’, Addison-Wesley,
1995.

2. C. Alexander, S. Ishikawa and M. Silverstein, ‘A Pattern Language – Town,
Buildings, Construction’, Oxford University Press, New York, 1977.

3. E. Gamma, R. Helms, R. Johnson and J. Vlissides, ‘Design Patterns: Elements

of Reusable Object-Oriented Software’, Addison-Wesley Professional, MA,
1994.

4. Douglas C. Schmidt and Paul Stephenson, ‘Experience using Design Patterns
to Evolve Communication Software across Diverse OS Platforms’,
Proceedings of the 9th European Conference on Object-Oriented
Programming, 1995.

5. C H Chang, C W Lu and P A Hsiung, ‘Pattern-based framework for
modularized software development and evolution robustness’, Information
& Software Technology, 2011.

6. D.C. Kung, H. Bhambhani, R. Shah and G. Pancholi, ‘An expert system for
suggesting design patterns: a methodology and a prototype’, Series in
Engineering and Computer Science: Software Engineering with
Computational Intelligence, Kluwer International, 2003.

7. Ackerman. L and Gonzalez. C, ‘The value of pattern implementations’, The
World of Software Development Journal, Computer Science Vol.32 Issue. 6,
pp. 28-32, 2011.

8. L. Rising, ‘The benefits of patterns’, IEEE software, Vol. 27 Issue. 5, 2011.
9. Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas and

Ioannis Stamelos, ‘An Empirical Investigation on the Reusability of Design
Patterns and Software Packages’, Department of Informatics, Journal of
Systems and Software, Vol. 84, 2011.

10. Apostolos Ampatzoglou, Georgia Frantzeskou, Ioannis Stamelos, ‘A
Methodology to Assess the Impact of Design Patterns on Software Quality’,
Department of Informatics, Information and Communication Systems
Engineering, University of the Aegean, Samos, Greece, 2012.

11. D. C. Schmidt and T. Suda, ‘An Object-Oriented Frameworkfor Dynamically
Configuring Extensible Distributed Communication Systems’, IEE/BCS
Distributed Systems Engineering Journal (Special Issue on Configurable
Distributed Systems), Vol. 2, pp. 280–293, 1994.

12. Yann-GaÄel Gueheneuc Professor, ‘Empirical Studies on the Impact of
Design Patterns on Quality’, Departement de genie informatique et genie
logiciel Ecole Polytechnique de Montreal, Quebec, Canada, 2010.

13. Apostolos Ampatzoglou and Alexander Chatzigeorgiou, ‘Evaluation of
object-oriented design patterns in game development’, Department of
Applied Informatics, University of Macedonia, Thessaloniki, Greece, 2006.

14. Fowler. M, ‘Patterns’, IEEE software, 20(2).Retrieved May 8, 2011 from
http://www.se.rit.edu/~se362/Misc/FowlerOnPatterns-IEEESoftware-Mar-
2003.

15. Cline M. P, ‘The pros and cons of adopting and applying design patterns in
the real world’, Communications of the ACM, 2011.

16. D Manolescu, W Kozaczynski, A Miller and J Hogg, ‘The growing divide in
the patterns world’, IEEE software, Vol. 24 Issue. 4, 2011.

17. F. Buschmann, R. Meunier, H. Rohnert and M. Stal, ‘Pattern-Oriented
Software Architecture - A Pattern System’, Wileys and Sons, 1995.

18. M. Weiss and A. Birukou, ‘Building a pattern repository: Benefiting from the
open, lightweight, and participative nature of wikis’ International
Symposium on Wikis (WikiSym), 2007.

19. L. Welicki, J.M.C. Lovelle and L.J. Aguilar, ‘Patterns meta-specification and
cataloging: Towards a more dynamic patterns life cycle’ International
Workshop on Software Patterns, IEEE, 2007.

20. J. Deng, E. Kemp and E.G. Todd, ‘Managing UI pattern collections’
Proceedings of the 6th ACM SIGCHI New Zealand Chapter’s International
Conference on Computer-Human Interaction: Making CHI Natural (CHINZ
‘05), ACM, pp. 31–38.

21. L. Rising, ‘The Pattern Almanac’, Addison-Wesley Longman Publishing,
2000.

22. P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro, J.L. Ferreira and C.
Bento, ‘Using CBR for automation of software design patterns’, 6th European

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 967
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Conference on Advances in Case-Based Reasoning, Springer, pp. 534–548.
23. G. Shu-Hang, L. Yu-Qing, J. Mao-Zhong, G. Jing and L. Hong-Juan, ‘A

requirement analysis pattern selection method for e-business project
situation’, IEEE International Conference on E-Business Engineering
(ICEBE’07), IEEE, pp. 347–350, 2007.

24. U. Zdun, ‘Systematic pattern selection using pattern language grammars and
design space analysis’, Software: Practice & Experience 37 pp. 983–1016, 2007.

25. M. Weiss and H. Mouratidis, ‘Selecting security patterns that fulfill security
requirements’, 16th International Conference on Requirements Engineering
(RE’08), IEEE, pp. 169–172, 2008.

26. H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc and N. Jussien, ‘Instantiating and
detecting design patterns: putting bits and pieces together’, International
Conference on Automated Software Engineering (ASE’ 01), ACM, pp. 166–
173, 2001.

27. O. Zimmermann, U. Zdun, T. Gschwind and F. Leymann, ‘Combining
pattern languages and reusable architectural decision models into a
comprehensive and comprehensible design method’, Proceedings of the 7th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008),
IEEE, 2008.

28. Zakaria Moudama and Noureddine Chenfoura, ‘Design Pattern Support
System: Help Making Decision in the Choice of Appropriate Pattern’,
Computer Science Department Faculty of Sciences Dhar Mehraz, University
Sidi Mohammed Ben Abdellah,Fez, Morocco, 2012.

29. Bleistein, S. J, Aurum, A., Cox, K., and Ray, P. K, ‘Linking requirements goal
modelling techniques to strategic e-business patterns and best practices’,
AWRE, 3., 2011.

30. Project triangle. Wikipedia (2011). Retrieved May
1,2011,from,http://en.wikipedia.org/wiki/Project_triangle.

31. Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson,
Ingrid Fiksdahl and King Shlomo Angel, ‘A Pattern Language: Towns,
Buildings, Construction’, 1977.

32. W. Tichy, ‘A catalogue of general-purpose software design patterns’, UIUC
Pattern Group V, 2011.

33. Martin Fowler, ‘Thoughts Design Patterns’, IEEE Computer Society, pp., 2003.
34. G. Goos, J. Hartmains and J.van Leeuwen, ‘ECOOP, Object-oriented

Programming: 9th European Conference’, Vol. 9, pp. 421, 1995.
35. Bansiya J and Davis C, ‘A hierarchical model for object-oriented design

quality assessment’, Transaction on Software Engineering, IEEE Computer
Society 28, Vol. 1, 2002.

36. Zakaria Moudama and Noureddine Chenfour, ‘Design Pattern Support
System: Help Making Decision in the Choice of Appropriate Pattern’,
Published by Elsevier Ltd, 2011.

37. http://www.paulgraham.com/icad.html... Revenge of the nerds. Essay, Paul
Graham.

38. Melvin E. Conway and M Conway, ‘How do Committees Invent
Datamation’, Vol. 14, pp28-31, 1968.

39. Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas and
Ioannis Stamelos, ‘An Empirical Investigation on the Reusability of Design
Patterns and Software Packages’, Department of Informatics, Journal of
Systems and Software, Vol. 84, Greece, 2011.

40. P Wendorff, ‘Assessment of design patterns during software reengineering:
Lessons learned from a large commercial project’, IEEE Computer Society,
2001.

41. Nobukazu Yoshioka, Hironori Washizaki and Katsuhisa Maruyama, ‘A
suvery on security patterns’, Department of Computer Science, Ritsumeikan
University, National Institute of Informatics, 2008.

 IJSER

http://www.ijser.org/

	1 Introduction

